Today, I’ll explain how to calculate the following limit:
\begin{equation} \begin{split} \lim_{x \to 5} \frac{x^2 \; – \, 25}{x \; – \, 5} = 10 \end{split} \end{equation}
Notice that both the numerator and the denominator in the above limit both tend to zero. To resolve this issue, notice that \( 25 = 5^2 \). So, using difference of squares, we get
\begin{equation} \begin{split} x^2 \; – \, 25 = (x \; – \, 5) (x + 5) \end{split} \end{equation}
Hence,
\begin{equation} \begin{split} \lim_{x \to 5} \frac{x^2 \; – \, 25}{x \; – \, 5} = \lim_{x \to 5} \frac{(x \; – \, 5)(x + 5)}{x \; – \, 5} \end{split} \end{equation}
We can cancel out \( x \, – \, 5 \) in both the numerator and the denominator to get
\begin{equation} \begin{split} \lim_{x \to 5} \frac{(x \; – \, 5)(x + 5)}{x \; – \, 5} = \lim_{x \to 5} x + 5 \end{split} \end{equation}
So,
\begin{equation} \begin{split} \lim_{x \to 5} \frac{x^2 \; – \, 25}{x \; – \, 5} = \lim_{x \to 5} x + 5 = 10 \end{split} \end{equation}
And there you have it!
Pingback: Using Difference of Squares for Limits -
Pingback: Tricks with Limits and Difference of Squares -